

Angriffhemmendes Verbund-Sicherheitsglas

Eine starke Partnerschaft mit

SAINT-GOBAIN
GLASS

SAINT-GOBAIN GLASS PROTECT

SAINT-GOBAIN GLASS PROTECT Angriffhemmendes Verbund-Sicherheitsglas

SGG STADIP PROTECT®

Verbund-Sicherheitsglas mit der Sicherheit gegen Angriff.

Ausführungen

Bei diesem speziellen VSG bilden zwei oder mehr Floatglas-Scheiben mittels hochreißfester Polyvinylbutyral-Zwischenschichten (PVB) einen festen, hochwiderstandsfähigen Verbund. Das Produkt ist in mehreren Sicherheitsklassen ausführbar:

- sGG STADIP PROTECT P-A: durchwurfhemmend nach DIN EN 356 A
- sGG STADIP PROTECT P-B: durchbruchhemmend nach DIN EN 356 B
- sgg STADIP PROTECT BR: durchschusshemmend nach DIN EN 1063
- sag STADIP PROTECT BS: sprengwirkungshemmend nach DIN EN 13541
- sgg STADIP PROTECT EH: nach VdS-Richtlinien

sGG STADIP PROTECT-Scheiben sind von offiziellen Prüfstellen geprüft und zugelassen. Der detaillierte Aufbau des jeweiligen sGG STADIP PROTECT-Typs ist in den Originalzeugnissen der zuständigen Prüfstellen vermerkt.

ssc STADIP PROTECT-Scheiben können asymmetrisch aufgebaut sein.
Aus diesem Grunde muss bei der Bestellung und beim Einglasen unbedingt die Angriffsseite und die Schutzseite beachtet werden. Die Schutzseite wird vom Herstellerwerk entsprechend gekennzeichnet.

In einzelnen sGGSTADIP PROTECT-Aufbauten können Einscheibensicherheitsgläser (ESG) enthalten sein. Bei Einscheibensicherheitsgläsern kann es material- und herstellungsbedingt in Einzelfällen durch sogenannte Nickelsulfideinschlüsse zu Spontanbrüchen kommen. Je nach Verwendungszweck empfiehlt sich daher die Verwendung von ESG-H. Mit einem Heat Soak Test kann das Restrisiko solcher Brüche erheblich reduziert, aber nicht vollkommen ausgeschlossen werden.

sca STADIP PROTECT-Scheiben bieten den in den einzelnen Widerstandsklassen angegebenen optimalen Schutz nur bei allseitiger Rahmung. Die Rahmen müssen den einzelnen Widerstandsklassen entsprechen. Glashalteleisten sollten grundsätzlich auf der angriffsabgewandten Seite montiert werden.

ssg STADIP PROTECT Aufbauten bestehen zum Teil aus vielschichtigen Aufbauten. Daher sind die Verglasungsrichtlinien und in Ergänzung der DIN EN 12543 Teil 5+6 die speziellen Qualitätsrichtlinien ssg STADIP PRO-TECT zu beachten.

CE Kennzeichnungspflicht

Verbundsicherheitsgläser sowie Isoliergläser müssen seit dem 1. März 2007 mit dem CE Kennzeichnen versehen werden. Alle Produkte mit hoher Sicherheitsrelevanz, die Leib und Leben schützen, unterliegen den höchsten Anforderungen, dem Level AoC-1. Dazu zählen die beschusshemmenden Gläser und die explosionshemmenden Verglasungen aus der Reihe der sog STADIP PROTECT.

Für diese Produkte darf der Hersteller nicht mehr selber die Konformität erklären. Ein unabhängiges Prüfinstitut muss als international zertifizierte Überwachungsstelle durch regelmäßige Fremdüberwachungen (Audits) die Übereinstimmung der Produkte und ihre reproduzierbaren Leistungseigenschaften bestätigen. Im Vergleich zu Level AoC-3 Produkten bedeutet das einen wesentlich höheren Aufwand in Produktions- und Prüfkosten.

Technische Daten

Biegespannung

Bei statischen Berechnungen für Windlasten und andere Belastungen (nach DIN 1055) gelten die in der TRLV angegebenen zulässigen Biegebruchspannungen.

Farbwiedergabe

In Abhängigkeit von der Scheibendicke und der Anzahl der verwendeten Zwischenschichten wird der Farbwiedergabeeindruck leicht beeinflusst. Dieser Effekt lässt sich durch Aufbauten aus extra-weißem sGG DIAMANT mindern.

Bei höheren Widerstandsklassen sind kleinste Einschlüsse nicht auszuschließen, die bei extremen Lichtverhältnissen und geringer Betrachtungsentfernung wahrnehmbar sind.

(siehe Richtlinien visuelle Qualität)

Grundsätzlich sind Kombinationen mit folgenden Produkten möglich:

- sgg STADIP COLOR
- sgg DIAMANT
- sgg PARSOL
- sgg ANTELIO
- sgg DECORGLASS
- sgg **SECURIT**
- sgg COOL LITE K/SKN/ST
- sgg ULTRA N
- sgg ONE

Wir bitten um Anfrage.

Wärmedurchgangskoeffizient (Ug-Wert)

Der Ug-Wert für sog STADIP PROTECT-Isoliergläser sog CLIMAPLUS PROTECT mit Wärmedämmglas sog PLANITHERM ULTRA N beträgt 1,1 W/m²K bei 15 mm SZR (Argon).

Schalldämmung

sgg STADIP PROTECT-Einheiten besitzen auf Grund der hohen Flächengewichte naturgemäß erhöhte Schalldämmwerte.

Maximalmaße - Toleranzen

Die Maximalabmessungen sind abhängig von den Aufbauten und dem Gesamtgewicht der jeweiligen sgg STADIP PROTECT-Typen. Wir bitten um Anfrage.

Die Toleranzen bei sGG STADIP PROTECT sind fertigungsbedingt größer als bei Standard-VSG.

Bei der Herstellung können sich die Einzelscheiben gegeneinander verschieben. Die Verschiebetoleranz liegt innerhalb der angegebenen Tabellenwerte.

Toleranzen

Seitenlänge				
Breite oder Höhe	0	n		
in mm*	bis 26	über 40		
bis 1000	± 2	± 3	± 4	
bis 2000	± 3	± 4	± 5	
üher 2000	+ 4	+ 5	+ 6	

^{*} Toleranz durch das jeweils größere Maß bestimmt

Dicke		
Dicke in mm	einschalig	Isolierglas
bis 26	±1	± 1,5
bis 40	± 2	± 2
über 40	± 3	± 3

Bearbeitung

Kantenbearbeitung sowie Bohrungen und Ausschnitte sind bei einschaligen VSG-Typen bedingt möglich. Wir bitten gegebenenfalls um Anfrage. Kombinationen mit sog SECURIT lassen keine nachträgliche Bearbeitung zu.

Pendelschlagversuch nach EN 12600

Der Pendelschlagversuch dient zur Ermittlung des Verhaltens von Glas bei stoßartigem Auftreffen eines massigen, verformbaren Körpers und eines harten kantigen Körpers. Diese Anforderung wird von allen sGG STADIP PROTECT-Typen in verschiedenen Kategorien erfüllt.

1. Bundeskanzleramt Berlin
Architekt: Axel Schultes
Fotograph: H.G.Esch
2. LVA Landesversicherungsanstalt,
Hamburg (D)
Architekt: Schweger + Partner Architekten
Fotograf: The United Things Incorporated
© Saint-Gobain Glass
3. Bild: FH München
Foto: Privat

Durchwurfhemmend nach DIN EN 356 A bzw. DH 4* CE-Level 3

Einbruchschutz für Ihr Privateigentum

Ständiger Anstieg der Einbruchdiebstähle, immer größere Schäden durch Vandalismus, zwingen zu höherer Sicherheit im privaten und öffentlichen Bereich. sag STADIP PROTECT bietet hier die Lösung für die unterschiedlichsten Sicherheitsbedürfnisse.

sgg STADIP PROTECT-Verglasungen erfüllen die Anforderungen der DIN EN 356 A. Diese Norm legt die Prüfbedingungen für durchwurfhemmende Verglasungen fest. Sie unterteilt die Anforderung an die Durchwurfhemmung in fünf Widerstandsklassen. Die Einteilung geht von den Auftreffenergien schwerer Wurfgeschosse aus.

Die aufgeführten Typen entsprechen der Standardpalette, weitere Sondergläser auf Anfrage.

Ausstattung mit sog SECURIT ALARM, oder ALARMDRAHT auf Wunsch möglich. sog SECURIT ALARM ab 6 mm. Das Gewicht erhöht sich entsprechend. Beide Systeme können mit Rand- oder Flächenanschluss ausgestattet werden.


") Isolierglas mit 15 mm SZR: Ug-Wert = 1,1 W/m²K mit SZR 15 mm, Argon und ssc PLANITHERM ULTRA N.

Außenscheibe 6 mm. Aus statischen Gründen kann sich die Scheibendicke erhöhen.

Einbruchhemmende Fenster, Türen und Abschlüsse werden nach DIN-EN 1627 klassifiziert. Für die VdS-Anerkennung sind die Anforderungen in der VdS-Richtlinie 2534 festgelegt.

7uordnung	der	Widerstandsklassen	n zu Anwendung	shereichen
Luciumung	uei	vviuci staliuskiasseli	I Zu Aliwelluulis	2306161611611

Anwen Objektbereich	dungsbeispiele Privathäuser		der- sklasse	Glasart	Тур	Dicke in mm	Gewicht in Kg/m²
Unterste Sicherheitsstufe Vandalismusschutz		P1A P1A	EN EN	Mono Iso	33.2 CP 107	7 28*	16 31
2. Ober-	Ein- und Mehr-	P2A	EN	Mono	44.2	9	21
geschoss von	familienhäuser	P2A	EN	Iso	CP 209	30*	36
Verwaltungs- gebäuden	in Wohn- siedlungen						
1.Obergeschoss	Freistehende	РЗА	EN	Mono	44.3	9	21,5
v. Verwaltungs- gebäuden	Wohnhäuser	P3A	EN	Iso	CP 309	30°	36
Erdgeschoss	Hohe Sicherheit	P4A	EN	Mono	44.4	9,5	22
v. Verwaltungs- gebäuden	im Privatbereich Ferien- und	P4A	EN	Iso	CP 410	31*	37

Prüfmethode

Die Prüfmethode ist eine Kugelfallprüfung. Jede Scheibe muss dem dreimaligen Aufprall einer ca. 4 kg schweren Stahlkugel standhalten. Die Fallhöhen in den einzelnen Klassen betragen:

Klasse P1A = 1,5 m

Klasse P2A = 3,0 m

Klasse P3A = 6,0 m

Klasse P4A = 9.0 m

Klasse P5A = 9,0 m**

Klasse DH4 = 12,5 m*

* VdS-Richtlinie

** mit neunmaligem Kugelfall

Durchbruchhemmend nach DIN EN 356 B bzw. EH* CE-Level 3

Optimaler Schutz für höchste Werte

Für höhere Anforderungen an die Einbruchhemmungen empfehlen wir sog STADIP PROTECT-Verglasungen der Widerstandsklasse P-B nach DIN EN 356 B.

Diese Norm legt die Prüfbedingungen für durchbruchhemmende Verglasungen fest, die gegen Angriffe mit einem schneidfähigen Schlagwerkzeug widerstandsfähig sind. Die Prüfmethode geht von Angriffen unter worst-case-Bedingungen (härtester Fall) aus.

Prüfmethode

Die Prüfung wird mit einer genormten Maschine und nach festgelegter Prüfmethode durchgeführt, die den Angriff mit einer handgeführten schweren Axt (2 kg) simuliert. Dabei wird ermittelt, wie viele Axtschläge erforderlich sind, um eine Durchbruchöffnung von 400 mm x 400 mm zu schaffen. Die Verglasungen werden in drei Widerstandsklassen wie folgt unterteilt:

Klasse P6B: 30-50 Schläge Klasse P7B: 51-70 Schläge Klasse P8B: > 70 Schläge

Die Prüfzeugnisse und VdS-Anerkennungen liegen vor. Die VdS-Anerkennung ist an die Prüfung beim VdS gebunden.

Einbruchhemmende Fenster, Türen und Abschlüsse werden nach DIN EN 1627 geprüft. Die Anforderungen für die VdS-Anerkennung sind in den VdS-Richtlinien 2534 festgelegt.

Je nach Höhe der zu schützenden Werte können Verglasungen einer entsprechenden Widerstandsklasse gewählt werden.

Ausstattung mit sog SECURIT ALARM, oder ALARMDRAHT auf Wunsch möglich. sog SECURIT ALARM ab 6 mm. Das Gewicht erhöht sich entsprechend. Beide Systeme können mit Rand- oder Flächenanschluss ausgestattet werden (siehe S. 10 + 11).

Zuordnung der Widerstandsklassen zu	u Anwendungsbereichen
-------------------------------------	-----------------------

Anwendungsbeispiele	Geprüft nach	Widerstands- klasse	Glasart	Тур	Dicke in mm	Gewicht in Kg/m²	DIN-EN 1627 Bauteilklasse
Exklusive Wohnhäuser							
Kaufhäuser	EN 356	P6B	Mono	SP 615	15	33	RC 3
Fotofachgeschäfte							
Phono-Videogeschäfte	EN 356	P6B	ISO	CP-SP615	36°	48	RC 3
Apotheken							
Museen	EN 356	P7B	Mono	SP 722	22	50	RC 4
Kunsthallen	VdS	EH2	Mono	B2.110	30	67	
Galerien	EN 356	P7B	ISO	CP-SP 722	43*	65	RC 4
Antiquitätengeschäfte	VdS	EH2	ISO	B2.210	48*	82	
Psychiatrische Anstalten							
Juweliere	EN 356	P8B	Mono	SP 827	27	59	RC 5/RC 6
Pelzgeschäfte	VdS	EH3	Mono	B3.110	40	90	
EDV-Anlagen							
Energiezentralen	EN 356	P8B	ISO	CP-SP 827	48*	72	RC 5/RC 6
Justizvollzugsanstalten	VdS	EH3	ISO	B3.210	60°	105	

Architekt: Wöhr Mieslinger Architekten Fotograf: H. G. Esch © Saint-Gobain Glass 2., 3. Foto: Kinon Porz Köln, Werksfoto

1. Foto: Landesbank Baden-Württemberg, Stuttgart (D)

^(°) Isolierglas mit 15 mm SZR: U_g-Wert = 1,5 W/m²K mit s_{GG}PLANITHERM ULTRA N. Außenscheibe 6 mm. Aus statischen Gründen kann sich die Scheibendicke erhöhen. Einbruchhemmende Fenster, Türen und Abschlüsse werden nach DIN-EN 1627 klassifiziert. Für die VdS-Anerkennung sind die Anforderungen in der VdS-Richtlinie 2534 festgelegt.

^{*} VdS-Richtlinie

Durchschusshemmend nach DIN EN 1063 CE-Level 1

Eine Verglasung ist durchschusshemmend, wenn sie das Durchdringen von Geschossen verhindert.

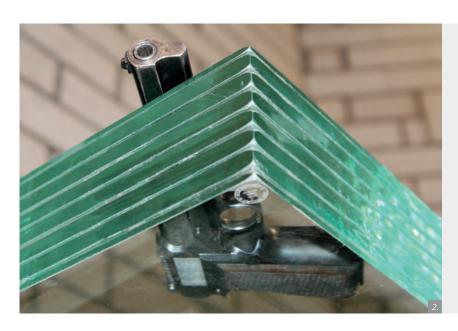
Die DIN EN 1063 unterscheidet zwischen "nicht-splitternden" Verglasungen (NS) und Typen mit Splitterabgang (S). Nicht-splitternde Verglasungen werden vornehmlich dort eingesetzt, wo sich in unmittelbarer Nähe der Verglasung Personen aufhalten.

Alle aufgeführten Gläser sind klassifiziert nach CE–AOC Level 1 und erfüllen die DIN EN 14449

- 1. Foto: Lehrter Bahnhof, Berlin (D) Architekt: gmp Architekten Fotograf: Engelhardt Sellin Aschau © Saint-Gobain Glass
- 2. Foto: Kinon Porz Köln, Werksfoto

Klasseneinteilung und Prüfbedingungen

Beanspru- chungsart	Kaliber	Geschossart	Masse des Geschosses in g	Geschwin- digkeit V _{2,5} in m/s	Schuss- entfernung in m	Anzahl Treffer	Treffer- abstand in mm
BR 1	.22LR	L/RN	2,6 ± 0,1	360 ± 10	10	3	120
BR 2	9mm Luger	FJ(1)/RN/SC	$\textbf{8,0} \pm \textbf{0,1}$	400 ± 10	5	3	120
BR 3	0.357 Magn.	FJ(1)/CB/SC	$\textbf{10,2} \pm \textbf{0,1}$	430 ± 10	5	3	120
BR 4	0.44 Magn.	FJ(2)/FN/SC	$\textbf{15,6} \pm \textbf{0,1}$	440 ± 10	5	3	120
BR 5	5,56 x 45 ⁽³⁾	FJ(2)/PB/SCP1	$\textbf{4,0}\pm\textbf{1}$	950±10	10	3	120
BR 6	7,62 x 51	FJ(1)/PB/SC	$\textbf{9,5} \pm \textbf{0,1}$	830 ± 10	10	3	120
BR 7	7,62 x 51 ⁽⁴⁾	FJ(2)/PB/HC1	$9,8\pm0,1$	820 ± 10	10	3	120
SG1	12 x 70	Brenneke	$31\pm0,5$	420 ± 20	10	1	
SG2	12 x 70	Brenneke	31 ± 0,5	420 ± 20	10	3	125 ± 10


CB: Kegelspitzgeschoß
FJ: Vollmantelgeschoß
FN: Flachkopfgeschoß
HC1: Stahl-Hartkern, Masse 3,7 g +/- 0,1 g,

Härte > 63 HRC
PB: Spitzkopfgeschoß

PB: Spitzkopfgeschoß
RN: Rundkopfgeschoß
SC: Weichkern (Blei)

SCP1: Weichkern (Blei) mit Stahlpenetrator (Typ SS109)

- $\hbox{(1) Stahl-Vollmantel-Gescho} \hbox{\it G}, plattiert$
- (2) Tombal-Vollmantel-Geschoß
- (3) Drallänge: 178 +/- 10 mm
- (4) Drallänge: 254 +/- 10 mm

Prüfmethode

EN 1063 Durchschusshemmende Verglasung

Die Prüfmethode ist eine Beschussprüfung mit Schusswaffen oder mit einer ballistischen Prüfeinrichtung. Die je nach Klasse geforderten Auftreffgeschwindigkeiten sind in der Tabelle angegeben.

In der Klasse SG 1 werden 3 Scheiben mit 1 Schuss geprüft.

In den Klassen BR 1 bis BR 7 und SG 2 werden 3 Gläser mit je 3 Schuss geprüft. Die Treffpunkte bilden ein Dreieck mit 120 mm Kantenlänge im Zentrum der Scheiben.

sggSTADIP PROTECT BR/SG - CE-Level 1

Durchschusshemmende sgg STADIP PROTECT-Typen

Widerstands- klasse	Art der Verglasung	Typ	Dicke in mm	Gewicht in Kg/m²	Klasse nach DIN EN 1522
BR1-S	Mono	HN 113-S	13	32	FB 1
BR1-S	Iso ⁽¹⁾	CP-HN 113-S	34	47	FB 1
BR2-S	Mono	HN 222-S	22	49	FB 2
BR2-S	Iso ⁽¹⁾	CP-HN 222-S	43	64	FB 2
BR3-S	Mono	HN 323-S	23	54	FB 3
BR3-S	Iso ⁽¹⁾	CP-HN 323-S	44	69	FB 3
BR4-S	Mono	HN 432-S	32	75	FB 4
BR4-S	Iso ⁽¹⁾	CP-HN 432 S	53	90	FB 4
BR5-S	Mono	HN 536-S	36	84	FB 5
BR5-S	Iso ⁽¹⁾	CP-HN 536-S	57	100	FB 5
BR6-S	Mono	HN 650-S	50	117	FB 6
BR6-S	Iso ⁽¹⁾	CP-HN 650-S	71	132	FB 6
BR7-S	Mono	HN 785-S	85	206	FB 7
BR7-S	Iso ⁽¹⁾	CP-HN 785-S	106	220	FB 7
SG1-S	Mono	UJ 132-S	32	75	FSG
SG1-S	Iso ⁽¹⁾	CP-UJ 132-S	53	90	FSG
SG2-S	Mono	UJ 250-S	50	117	FSG
SG2-S	Iso ⁽¹⁾	CP-UJ 250-S	71	132	FSG
BR2-NS	Mono	HN 231-NS	31	73	FB 2
BR2-NS	Iso ⁽¹⁾	CP-HN 231-NS	52	88	FB 2
BR3-NS	Mono	HN 344-NS	44	104	FB 3
BR3-NS	Iso ⁽¹⁾	CP-HN 344-NS	65	119	FB 3
BR4-NS	Mono	HN 454-NS	54	129	FB 4
BR4-NS	Iso ⁽¹⁾	CP-HN 454-NS	75	144	FB 4
BR4-NS	Iso ⁽²⁾	CP-HN 452-NS	52	82	FB 4
BR5-NS	Mono	HN 558-NS	58	139	FB 5
BR5-NS	Iso ⁽¹⁾	CP-HN 558 NS	79	154	FB 5
BR6-NS	Mono	HN 675-NS	75	181	FB 6
BR6-NS	Iso ⁽¹⁾	CP-HN 675-NS	96	196	FB 6
BR6-NS	Mono	HN 673-NS	73	175	FB 6
BR6-NS	Iso ⁽¹⁾	CP-HN 673-NS	94	199	FB 6
BR6-NS	Iso ⁽²⁾	CP-HN 671-NS	71	127	FB 6
BR7-NS	Mono	HN 781-NS	81	196	FB 7
BR7-NS	Iso ⁽¹⁾	CP-HN 781-NS	102)	211	FB 7
BR7-NS	Mono	HN 788 NS	88	211	FB 7
BR7-NS	Iso ⁽¹⁾	CP-HN 788 NS	109	226	FB 7

 $^{(1)}$ Isolierglas mit 15 mm SZR: Ug-Wert = 1,1 W/m²K mit sggPLANITHERM ULTRA N. Außenscheibe 6 mm.

Aus statischen Gründen kann sich die Scheibendicke erhöhen. Durchschusshemmende Fenster, Türen und Abschlüsse werden nach DIN EN 1522 klassifiziert.

⁽²⁾ Sonderaufbau mit 15mm SZR: Ug-Wert =1,1 W/m²K

Kombinationen CE-Level 1

Die in diesem Prospekt aufgeführten Typen entsprechen der Standardpalette, weitere Sondergläser auf Anfrage.

Durchbruch- und Durchschusshemmende Typen

Durchbic	Durchbruch- und Durchschussnehmende Typen						
Widerstar Durchschuss	ndsklassen Durchbruch	Art der Verglasung	Тур	Dicke in mm	Gewicht in Kg/m²	Klasse nach DIN EN 1522	
BR1-S	P6B	Mono	JH 610.21-S	21	45	FB 1	
BR3-S	P6B	Mono	JH 630.28-S	28	67	FB 3	
BR3-S	P7B	Mono	JH 730.29-S	29)	68	FB 3	
BR3-S	P7B	Mono	JH 730.30-S	30	69	FB 3	
BR4-S/SG-1-S	P8B	Mono	JH 841.35-S	35)	80	FB 4/FSG	
BR4-S	P7B	Mono	JH 740.39-S	39	93	FB 4	
BR4-S	P8B	Mono	JH 840.40-S	40	93	FB 4	
BR4-NS	P8B	Mono	JH 840.54-NS	54	129	FB 4	
BR5-S/SG-1-S	P8B	Mono	JH 851.36-S	36	84	FB 5/FSG	
BR5-S/SG1-S	_	Mono	JH 052.44-S	44	104	FB 5/FSG	
SG1-S	P8B	Mono	JH 801.32-S	32	72	FSG	
SG2-S	P8B	Mono	JH 862.51-S	51	120	FSG	

Ausführungen als Isolierglas mit vorgesetztem Scheibenzwischenraum und einer Zusatzscheibe sind möglich.
Normalerweise werden 15 mm SZR und eine 6 mm Frontscheibe sGG PLANITHERM ULTRA Naddiert. Der Ug-Wert liegt dann bei Ug = 1,1 W/m2K.

Aus statischen Gründen kann sich die Scheibendicke erhöhen. Durchschusshemmende Fenster, Türen und Abschlüsse werden nach DIN EN 1522 klassifiziert.

Sprengwirkungshemmend nach DIN EN 13541 CE-Level 1

Explosionsschutz bei Bombenanschlägen

Immer wieder erreichen uns Meldungen über Sprengstoffanschläge auf Gebäude im öffentlichen, militärischen oder institutionellen Bereich. Der Sprengstoff wird bevorzugt in einiger Entfernung vom Gebäude in einem Koffer oder in einem Auto deponiert und gezündet. Dabei kommen unterschiedliche Sprengstoffmengen zum Einsatz.

Übliche Verglasungen können naturgemäß den auftretenden Beanspruchungen nicht standhalten.

sag STADIP PROTECT BS schützt Ihre Anlagen und Gebäude gegen die Auswirkungen von Explosionen. Die bei Explosionen in Abhängigkeit von Sprengstoffmenge und Entfernung zum Explosionsort auftretende Stoßwelle wird von der Verglasung aufgenommen. Gleichzeitig schützt die Verglasung gegen auftreffende Bruchstücke und Splitter.

Prüfbedingungen

Die DIN EN 13541 beschreibt das Verfahren zur Prüfung sprengwirkungshemmender Eigenschaften von Verglasungen und deren Einteilung in Widerstandsklassen. Die Prüfung simuliert die senkrecht auf einer Fläche auftreffende Wirkung einer TNT-äquivalenten Sprengladung, die in entsprechender Entfernung gezündet wird.

Die Einteilung der Verglasungen erfolgt in 4 Widerstandsklassen. Dabei wird neben der Druckbelastung auch die Mindestzeitdauer der positiven Druckphase festgelegt.

Die Glasprüfung der Explosionshemmung wird nach DIN EN 13541 mit einer Scheibenabmessung von 90 x 110 cm durchgeführt. Diese Prüfung dient nur als genereller Nachweis, dass das Glas für die gewählte Klassifizierung geeignet ist.

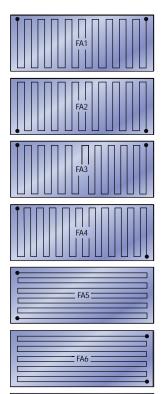
Für den Einbau in ein Gebäude muss in der Regel eine Systemprüfung des Rahmenherstellers vorgelegt werden.

Es liegt in der Verantwortung des Kunden sicherzustellen, dass für das von ihm eingesetzte Verglasungssystem (Glas, Rahmen und Befestigung im Mauerwerk) mit den von ihm verwendeten maximalen Abmessungen ebenfalls ein Prüfnachweis vorhanden ist.

Die aufgeführten Typen entsprechen der Standardpalette, weitere Sondergläser auf Anfrage.

Kombinationen mit anderen Funktionsgläsern sind möglich.

1., 2., 3. Foto: Kinon Porz Köln, Werksfoto 4. Foto: Ernst Mach Institut, Effringen-Kirchen 5. Foto: NRW-Bank, Düsseldorf (D) Architekt: RKW Rhode Kellermann Wawrowsky Fotograf: Christoph Seelbach Fotografie © Saint-Gobain Glass


Prüfbedingunge	n	
Widerstandsklasse gegen Sprengwirkung	positiver Maximaldruck pr der reflektierten Stoßwelle in bar ± 5 %	Dauer t ₀ der positiven Druckphase in ms mindestens
ER 1	0,5-1,0	≥ 20
ER 2	1,0-1,5	≥ 20
ER 3	1,5-2,0	≥ 20
ER 4	2,0-2,5	≥ 20

Sprengwirkungshemmende sag STADIP PROTECT-Typen						
Widerstands- klasse	Art der Verglasung	Тур	Dicke in mm	Gewicht in kg/m²	Alarmgabe	
ER 1 S	Mono	BS 110 S	10	22	Ausstattung mit	
ER 1 NS	Mono	BS 118 NS	18	40	sggSECURIT ALARM ⁽¹⁾	
ER 1 S	Mono	BS 218 S	18	39	oder Alarmdraht	
ER 2 NS	Mono	BS 226 NS	26	63	auf Wunsch möglich. Für beide Systeme	
ER 3 S	Mono	BS 331 S	31	73	empfehlen wir, nur	
ER 4 S	Mono	BS 427 S	27	68	Randanschluss zu	
ER 4 NS	Mono	BS 433 NS	33	83	verwenden.	

Prüfformat 900 x 1100 mm nach DIN EN 13541.

Alarmdraht mit Randanschluß

FA = Flächenanschluss

RA1

FA7

RA = Randanschluss

Ein "direkter Draht" zu mehr Sicherheit

Zusätzlich zu den optimalen einbruchhemmenden Eigenschaften des Verbund-Sicherheitsglases sGG STADIP PROTECT bietet die Ausrüstung der Scheiben mit Alarmsystemen einen weiteren Schutz. Leiterschleifen, die in die Scheibe eingebrannt werden, oder Alarmdraht-Einlagen zwischen Glas und Folie lösen bei Unterbrechung durch Beschädigung der Scheiben Alarm aus.

Auf der Folie zwischen zwei Scheiben einer sag STADIP PROTECT-Einheit ist ein elektrisch leitender Silberdraht mäanderförmig verlegt. Bei Beschädigung der Scheibe und Zerreißen des Drahtes wird der Alarm ausgelöst. Der Anschlusswiderstand ist abhängig von der Größe der Scheibenfläche.

scg STADIP PROTECT mit Alarmdraht wurde vom Verband der Sachversicherer (VdS) geprüft und unter der Zulassungsnummer G 181104 anerkannt.

Kenndaten

Drahteinlage

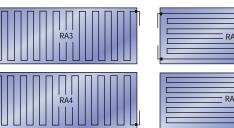
- Feinsilberdraht 0,1 mm dick
- Widerstand ca. 1,75 Ω/m
- maximale Strombelastung 0,5 Ampere

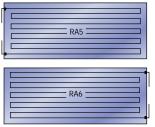
Der temperaturbedingte Widerstandsbeiwert beträgt 0,004 Ω /K, das heißt, in der Anwendung kann der angegebene Gesamtwiderstand der Scheibe durch Temperaturänderung um ca. 10 % nach oben oder unten schwanken.

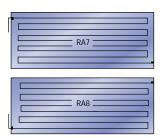
Drahtverlauf

Der Verlauf ist parallel im Abstand von normalerweise 35 mm, es sind aber auch andere Drahtabstände möglich, z. B. bei Juwelieren laut VdS-Richtlinien 20 mm.

Aufgrund vorhandener mechanischer Spannungen des Alarmdrahtes ist nach dem VSG-Prozess mit Abweichungen von der Geradlinigkeit des Drahtes zu rechnen.


Alarmdraht "Flächenanschluss ADF"
Die Anschlussbuchsen befinden sich
raumseitig in der sichtbaren Scheibenfläche mit einem Abstand von
35 mm zur Glaskante. Die Anschlusslitzen sind 80 mm lang und dürfen
nicht gekürzt werden. Verlängerungen
müssen bauseits durchgeführt
werden.


Die Anschlussbuchsen sind durch die mitgelieferten PVC-Schutzkappen zu schützen. Diese sind über die aus der Scheibe austretenden Anschlusslitzen zu schieben und in die Bohrungen einzudrücken. Die Anschlusslitzen sind mit einem flexiblen Isolierschlauch, der mit einem Ende in die Schutzkappe eingeführt wird, zu schützen.


Alarmdraht "Randanschluss ADR"

Die Anschlusslitzen sind 500 mm lang und befinden sich im Falzbereich. Die Glaseinheit hat keine vorstehenden anschlussbedingten Teile. Die Verglasung muss entsprechend unseren Richtlinien erfolgen. Entsprechende Hinweise entnehmen Sie bitte den Verglasungs-Richtlinien.

Beispiele für Drahtverlauf und Lage der Anschlusspunkte von außen gesehen.

Alarmsystem mit eingebrannter Leiterschleife

In einer Ecke der Innenseite einer sGG SECURIT-Scheibe ist eine elektrische Leiterschleife eingebrannt (DP 2404278 und DP 1278292), die mit der Alarmanlage verbunden wird. Bei Zerstörung wird durch die Sprungbildung die Leiterschleife unterbrochen und Alarm ausgelöst. Wir empfehlen die Leiterschleife vorzugsweise in einer der oberen Ecken anzuordnen.

Ken	nd	ater	1
NEI	ши	иссі	


Widerstände der Alarmschleifen

Der Anschlusswiderstand von sca SECURIT ALARM ist nicht glasflächenabhängig. Der Schleifen-Widerstand liegt je nach Ausführung zwischen 1 und 6 Ohm und wird auf dem Scheibenaufkleber angegeben. Für die Auslegung der Alarmanlage hat dieses System den Vorteil, dass jede Scheibe annähernd – unabhängig von der Flächengröße - den gleichen ohmschen Widerstand hat. Die maximale Strombelastung darf 0,1 A nicht überschreiten.

Anschluss

Der elektrische Anschluss ist fachgerecht auszuführen. Alle bauseitigen Kabelverbindungen und -verlängerungen sind gegen Feuchtigkeit zu schützen. Die Scheibenanschlüsse dürfen nicht mechanisch belastet werden. Die Richtlinie VDE 0833 ist zu beachten. Die Anschlusskabel an den Scheiben sind 300 mm lang.

sgg SECURIT ALARM mit Flächenanschluss ASF VdS-Anerkennungs-Nr. G 180030.

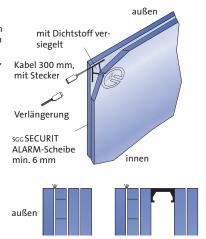
Maximal-Abmessungen	
Glasdicke	Breite x Höhe
4 mm	1000 x 2000 mm
5 mm	1200 x 3000 mm
ab 6 mm	2100 x 3660 mm

Ein Kantenversatz kann an allen Verbundglas-Kombinationen mit sgg SECURIT ALARM auftreten und ist nachträglich nicht korrigierbar. Eine Beanstandung ist nicht möglich.

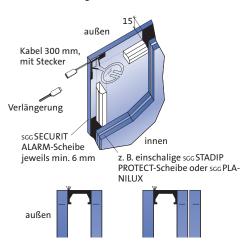
Steckverbindung

Die Versionen ASR-A und ASR-B werden mit einer Steckverbindung geliefert. Dadurch wird die Montage an der Baustelle vereinfacht.

Zur Weiterführung und individuellen Längenanpassung stehen optional Verlängerungskabel mit passenden Buchsen in Längen von 1,5 m, 5 m und 10 m zur Verfügung.


Allgemeine Hinweise

Bei sgg SECURIT AL ARM in Verbindung mit sgg STADIP PROTECT - Einheiten sind die max. Abmessungen von sgg SECURIT zu berücksichtigen. Minimale Glasdicke 6 mm, bei einem einschaligen VSG-Aufbau.


1., 2. Foto: Kinon Porz Köln, Werksfoto

sag SECURIT ALARM mit Randanschluss ASR-Typ A VdS-Anerkennungs-Nr. G 180030.

sgg SECURIT ALARM mit Randanschluss ASR-Typ B VdS-Anerkennungs-Nr. G 180030.

Sie wollen mehr über sog STADIP-PROTECT wissen? Unsere autorisierten CLIMAplusSECURIT-Partner beraten Sie gern und entwickeln für Sie individuelle Lösungen – von der Planung bis zur Realisation.

Händler

Titelbild:Bundeskanzleramt Berlin Architekt: Axel Schultes Fotograph: H.G.Esch Bilderreihe (Titel): Kinon Porz GmbH, Werksfotos

Weitere Informationen CLIMAplusSECURIT-Partner Marketing-Service

Tel. +49 (0) 180 500 20 30 50* Fax +49 (0) 180 500 20 30 51* (*14 ct/Min. aus dem dt. Festnetz Mobilfunktarife können hiervon abweichen)

www.climaplus-securit.com

GlassInfo
email: glassinfo.de@saint-gobain.com
Fax +49 (0) 180 500 20 30 53*
(*14 ct/Min. aus dem dt. Festnetz
Mobilfunktarife können hiervon abweichen)

www.saint-gobain-glass.com